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Abstract

The recent development of more sophisticated remote sensing
systems enables the measurement of radiation in many more
spectral intervals than previous possible. An example of that
technology is the AVIRIS system, which collects image data in 220
bands. As a result of this, new algorithms must be developed in
order to analyze the more complex data effectively.

Data in a high dimensional space presents a substantial challenge,
since intuitive concepts valid in a 2-3 dimensional space do not
necessarily apply in higher dimensional spaces. For example, high
dimensional space is mostly empty. This results from the
concentration of data in the corners of hypercubes. Other examples
may be cited.

Such observations suggest the need to project data to a subspace of
a much lower dimension on a problem specific basis in such a
manner that information is not lost. Projection Pursuit is a technique
that will accomplish such a goal. Since it processes data in lower
dimensions, it should avoid many of the difficulties of high
dimensional spaces. In this paper, we begin the investigation of
some of the properties of Projection Pursuit for this purpose.
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methods take into account a priori problem specific information.
After considering the characteristics of the high dimensional space
geometry of multispectral data, we propose the use of an algorithm
that will linearly combine the features maximizing the distance
between classes as a preprocess using labeled samples.

II. High Dimensional Space and the Curse of Dimensionality

The difficulty of dimensionality has been known for more than
three decades, and its impact varies from one field to another. In
combinatorial optimization over many dimensions it is seen as a
growth of the computational effort exponentially with the number
of dimensions. In statistics, it manifests itself as a problem of
parameters or density estimation due to the sparcity of data. Such
sparcity is produced by some geometrical properties of high
dimensional feature space. Geometry characteristics exhibit
surprising behavior of data in higher dimensions. For example, it
has been shown that as the dimension increases (Scott 1992):
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I. Introduction

As the number of dimensions of high spectral resolution data
increases, the capability to detect more detailed classes and to
achieve increased classification accuracy should be possible.
Supervised classification techniques must be trained with label
samples, but the number of such samples is usually limited. Hughes
proved that with a limited number of training samples there is a
penalty in the classification accuracy as the number of features
increases beyond some point (Hughes, 1968), thus this could
become a problem in high dimensional cases. A number of
techniques for feature extraction have been developed to reduce the
dimensionality. Among those techniques are Principal Components,
Discriminant Analysis, and Decision Boundary Feature Extraction
(Lee & Landgrebe, 1993). These techniques estimate the statistics
at full dimensionality in order to extract the relevant features for
classification. If the number of training samples is not adequately
large, the estimation of parameters in high dimensional data will not
be accurate enough. As a result the estimated features may not be
reliable. In order to avoid such difficulty, a pre-processing of the
data that will produce a linear combination of features reducing the
dimensionality is needed. Such reduction enables the estimation of

parameters to be more accurate for feature extraction (see figure 1)
(Lee & Landgrebe, 1993).
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Figure I. Pre-processing of high dimensional data.

There are a number of possibilities for pre-processing data in this

fashion. A simple one might be to choose only every nth channel,.
Another might be averaging every n channels. None of these

(1) The volume of a hypercube concentrates in the corners.
The fraction of the volume of a hypersphere inscribed
in a hypereube is:

volume - sphere _ dA

fd'= volume-cube =d2d-tF(%)

where d is the number of dimensions.

Note that lima..,, fa_ = 0

(2) The volume of a hypersphere concentrates in the outside
shell. The fraction of the volume of a sphere of radius r-

e inscribed in another sphere of radius r is:

fd2 Vd(r)-Vd(r-e) ra-(r-e)d=l- 1-
= V d(r) = r d

Note that : lima__, fd2 = 1

Both characteristics mentioned show that high dimensional space is

mostly empty, which implies that multivariate data in R d is almost
always in a lower dimensional structure. A concrete consequence of
the above discussion is that normally distributed data will have a
tendency to concentrate on the tails; meanwhile uniform distributed
data will be more likely to be collected in the corners, making
density estimation extremely difficult.

(3) The diagonals are nearly orthogonal to all coordinate
axis. The cosine of the angle between any diagonal
vector and a Euclidean coordinate axis is:

c°s(ea ) --"+-'Td' where lima_,_ cos(O a ) = 0

This piece of information is extremely important, because the
projection of any cluster onto any diagonal, e.g., by averaging
features, could destroy information of multispectral data.

In terms of parameter estimation, the number of samples required, to
make a given estimation is large in multispeetral data., but in a
nonparametrie approach the number of samples required to estimate
the density is even greater. As a consequence it is desirable to
project the data to a lower dimensional space. Commonly used
techniques, such as Principal Components or Discriminant Analysis
have the disadvantage of requiring computations at full
dimensionality, which results in the use of estimated statistics that
are not necessarily accurate.

The goal is to make computations in a lower dimensional space
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where the projected data produce an "interesting" structure. A
technique that will enable us to make such computations and to
define what "interesting" means is Projection Pursuit.

II1. Projection Pursuit

As has been defined (Scott 1992) "Projection pursuit is the
numerical optimization of a criterion in search of the most
interesting low-dimensional linear projection of a high dimensional
data cloud." Projection Pursuit automatically picks an "interesting"
lower dimensional projection of a high dimensional data
maximizing or minimizing a function called the projection index.
This technique is able to bypass many of the problems of high
dimensionality by making the computations in a low dimensional
space. A number of the classical methods that have been used for
feature extraction are special cases of Projection Pursuit. With the
use of suitable projection indexes, Principal Components and
Discriminant Analysis were proved to be specific examples (Huber
1985).

The choice of the projection index is the most critical aspect of this
technique. What "interesting" means depends on what function or
projection index one uses. In remote sensing image analysis
"interesting" would certainly be a projection where data separates
into different meaningful clusters which are exhaustive, separable,
and of information value (Swain & Davis, 1978).

For a mathematical interpretation let us define:
X: the initial multivariate data set (KxN).
A: an orthonormal matrix (MxK).
Y: the resulting projected data (MxN).

where Y = ATx. A is the parameter matrix that optimizes the

projection index I(ATX).

Many authors (Huber, 1985), (Jones & Sibson, 1987) use the
computation of the negative of (Shannon) entropy as a projection
index:

I(ATx) = J_,of(Y)log(Y)dY, Y = ATx

It is well known in Information Theory that entropy is maximized
by the Normal distribution (Blahut 1987). Maximizing the negative
entropy index will thus give the least normal projection. This type
of linear projection would be expected to produce a multimodal
density with the consequence of maximizing the separation between
clusters. However, the negative entropy index has three main
disadvantages. The first one is that one must center and spherize the
data with the consequence of raising the contribution from noisy
variables. The second disadvantage is that this index is suitable for
a nonparametric approach which is wasteful of a priori information.
The third disadvantage is that if there is not enough data the
technique might divide a cluster of a class into different modes.

With that in mind we propose to use'a parametric approach where
maximizing a selected projection index will increase the distance
among classes. The proposed projection index is the Bhattacharyya
distance. For two classes the index will be:

Here we will compute the matrix A that maximizes Bhattacharyya
distance in the projected space. If there are more than two classes
the average or the minimum of the combination of distances can be
maximized. Let C be the number of classes. The index for average
Bhattacharyya distance is:

,+, -', _,,,,._÷_,,o/I " I/

The index for minimum Bhattacharyya is:

2 ' 2Y 1yI _m

In the present paper this technique will be used as a preprocessing
method of multispectral data. From the initial number of channels

we can produce a linear combination to obtain a preliminary set of
features. The advantale of this method is that one can determine a
combination of features wl_ose number is greater than the number
of samples preserving information. After preprocessing the data in
this way, we can use any method of feature extraction known to
obtain the final set of features that will be used to classify the data.

IV. Experiments

The multispectral data used in these experiments is a segment of an
AVIRIS frame taken of NW Indiana's Indian Pines test site. Only
88 features were used from the original 220 spectral channels. This
data was obtain in June 1992. By that time most of the crops in the
agricultural portion of the test site had not reached their maximum
height. In this circumstance, species classification is a challenging
problem, because the data gathered came not only from the
vegetation but also from variations in soils, moisture, and residues.

Exneriment I

Thirteen classes were defined after using a clustering algorithm and
ground truth information. The number of training samples was
greater than or equal to 60 samples/class. One of the classes reached
the minimum (60 training samples). As a consequence Decision
Boundary feature extraction could not be used for this
preprocessing step. Four algorithms were used to reduce the number
of dimensions. Three of them used to project the data from an 88
feature space to an 11 feature space: (1) averaging contiguous
groups of eight featu_s, (2) choosing 1 in every eight consecutive
features, and (3) combining every eight contiguous features using
Projection Pursuit with minimum Bhattacharyya as an index. The
fourth algorithm used was Discriminant Analysis where the first 11
features were used.

The next step was the use of a feature selection algorithm to choose
the combination of features for classification. The algorithm selects
the best subset of features based on an average pairwise
Bhattacharyya distance measure. After choosing the best
combination of features from 1 to 10, the data was classified using a
standard Maximum Likelihood classifier. A threshold was applied
to the classifier results whereby 2% of the least likely points were
thresholded. Figure 2 illustrates the results. The maxinmm accuracy
was obtained by Projection Pursuit (70.9) with the use of three
features. For that particular method, after the maximum was
reached, the accuracy was maintained at near to the maximum level.
The other methods, after reaching their maximum, began to
decrease in accuracy significantly as the dimensionality increased.
The results show that Projection Pursuit was able to function
effectively with more features than other methods. This is particular
relevant when it is recognized that typically as the number of
classes increases the number of features needed to reach the
maximum classification accuracy increases as well. With the use of
Bhattacharyya index Projection Pursuit consolidates the data in
different classes more than other algorithms. Consequently, more
information is preserved. Among all the other algorithms, channel
averaging preserved less information than any other method.
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Figure 2. Classification accuracy vs. dimensionality.

Experiment II

In this experiment 5 classes where defined and only 60
samples/class were used to train the classifier. This experiment was
designed to test how robust each pre-processing method is in
relation to the Hughes phenomena. Because of the limit on the
number of training samples, neither Decision Boundary nor
Discriminant Analysis could be used. As a result we were
constrained to use a pre-processing algorithm. Observe that
Projection Pursuit has the advantage of being able to use a number
of labeled samples (60) less than the number of features (88). After
using the same procedure used in Experiment I, we plot the results
in Figure 3. The figure shows that Projection Pursuit is more
successful in terms of mitigating the Hughes phenomena. At almost
all the dimensionality Projection Pursuit provided the greater
accuracy.
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Figure 3. Classification accuracy vs. dimensionality.

V. Concluding Remarks

The increased number of features of modern data sources increase
the amount of information which should be extractable from

multispectral data. At the same time, since there is usually a limit
on the number of training samples, degrading factors such as the
Hughes phenomena and other characteristics of high dimensional
data also increase as the number of dimensions increases. The

challenge is to reduce the number of dimensions avoiding the
obstacles inherent in the above mentioned phenomenon, while
preserving maximum information and using a priori data. The use
of Projection Pursuit as a pre-processing algorithm carries out this
task better than using feature extraction or feature selection
algorithms alone or using the two other pre-processing algorithms
mentioned in figures 2 and 3, without a priori information.

A significant advantage of Projection Pursuit is that it enables the
analyst to choose a particular index that relates to the specific
application at hand. In our particular case an "interesting" projection
is one that increases the distance among classes. For that reason we
used Bhattacharyya distance as the index with the consequence that
the data is better separated into the different classes.
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